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Toward a Test Theory for Assessing

Student Understanding

Robert J. Mislevy, Kentaro Yamamoto, and Steven Anacker

Educational Testing Service

Abstract

The view of learning that underlies standard test theory is

inconsistent with the view rapidly emerging from cognitive and educational

psychology. Learners become more competent not simply by learning more

facts and skills, but by reconfiguring their knowledge; by "chunking"

information to reduce memory loads; and by developing strategies and

models that help them discern when and how facts and skills are important.

Neither classical test theory nor item response theory (IRT) is designed to

inform educational decisions conceived from this perspective. This paper

sketches the outlines of a test theory built around models of student

understanding, as inspired by the substance and the psychology of the

domain of interest. The ideas are illustrated with a simple numerical

example based on Siegler's balance beam mks. Directions in which the

approach must be developed to be broadly useful in educational practice are

discussed.



Background

When schooling became mandatory at the turn of the century, educators suddenly

faced selection and placement decisions for unprecedented numbers of students, displaying

the diversity of abilities and backgrounds that individuals bring to schooling (Glaser,

1981). Numbers of correct answers to multiple-choice test items were used to rank

students according to their overall proficiencies in domains of tasks. These ranldngs were

used in turn to predict students' success in fixed educational experiences.

Classical test theory (CTF) emerged when Spearman (e.g., 1907) applied statistical

methods to study how reliable estimates of this overall proficiency would be from different

test forms that might be constructed for the purpose. Extensions of this work led over the

years to a vast armamentarium of techniques for building tests and maldng decisions with

test scores (Gulliksen, 1950); to an axiomatic foundation for statistical inference about test

scores (Lord, 1959; Lord & Novick, 1968; Novick, 1966); and to sophisticated techniques

for partitioning test score variance according to facets of items, persons, and observational

settings (Cronbach, Gleser, Nanda, & Rajaramam,1972). It is important to note that in all

this work, the object of inference is overall proficiencythe test score, observed or

expected in terms of numbers of correct responses in a domain of items.

Item response theory (IRT; see Hambleton, 1989, for an overview) represented a

major practical advance over crr by modeling probabilities of correct item response in

terms of an unobservable proficiency variable. IRT solves many problems that were

difficult under crr, in equating, test construction, and adaptive testing. Advanced

statistical methods have been brought to bear on inferential problems in 1RT, including

sophisticated estimation algorithms (e.g., Bock & Aitldn, 1981), techniques from missing-

data theory (Mislevy, in press-a), and Bayesian treatments of uncertainty in models and

parameters (Lewis, 1985; Mislevy & Sheehan, 1990; Tsutakawa & Johnson, 1988). The

underlying psychological model remains quite simple, however, as in crr, the focus

remains on overall proficiency in a domain of items. From the perspective of IRT, two

students with the same overall proficiency are indistinguishable.

As useful as standard tests and standard test theory have proven in large-scale

evaluation, selection, and placement problems, their focus on who is competent and how

many items they answer can fall short when the goal is to improve individuals'

competencies. Glaser, Lesgold, and Lajoie (1987) point out that tests can predict failure
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without an understanding of what causes success, but intervening to prevent failure and

enhance competence requims deeper understanding.

The past decade has witnessed considerable progress toward the requisite

understanding. Psychological research has moved away from the traditional laboratory

studies of simple (even random!) tasks, to tasks that better approximate the meaningful

learning and problem-solving activities that engage people in real life. Studies comparing

the ways experts differ from novices in applied problem-solving in domains such as

physics and trouble-shooting (e.g., Chi, Feltovich & Glaser, 1981) reveal the central

importance of knowledge structuresnetworks of concepts and interconnections among

them that impart meaning to patterns in what one observes and how one chooses to act.

The process of learning is to a large degree expanding these structures and, importantly,

reconfiguring them to incorporate new and qualitatively different connections as the level of

understanding deepens. Educational psychologists have begun to put these fmdings to

work in designing both instruction and tests (e.g., Glaser et al., 1987; Greeno, 1976;

Marshall, 1985, in press). Again in the words of Glaser, Lesgold, and Lajoie (1987),

"Achievement testing as we have defined it is a method of indexing stages of

competence through indicators of the level of development of knowledge,

skill, and cognitive process. These indicators display stages of performance

that have been attained and on which further learning can proceed. They

also show forms of error and misconceptions in knowledge that result in

inefficient and incomplete knowledge and skill, and that need instructional

attention." (p.81)

Paraphrasing Ohlsson and Langley (1985), Clancey (1986) summarizes the shift in

perspective: "[to] describing mental processes, rather than quantifying performance with

respect to stimulus variables; describing individuals in detail, not just stating generalities;

and giving psychological interpretation to qualitative data, rather than statistical treatment to

numerical measurements" (p. 391).

An Approach to Modeling Student Understanding

The modeling approach we are beginning to pursue can be encapsulated as follows:

"Standard test theory volved as the application of statistical theory with a

simple model of ability that suited the decision-making environment of mass

educational systems. Broader educational options, based on insights into

2



the nature of learning and supported by more powerful technologies,

demand a broader range of models of capabilitiesstill simple compared to

the realities of cognition, but capturing patterns that inform a broader range

of instructional alternatives. A new test theory can be brought about by

applying to well-chosen cognitive models the same general principles of

statistical inference that led to standard test theory when applied to the

simple model." (Mislevy, in press-b).

The approach begins in a specific application by defming a universe of student

models. This "supermodel" is indexed by parameters that signify distinctions between

states of understanding. Symbolically, we shall refer to the (typically vector-valued)

parameter of the student-model as i. A particular set of values of ti specifies a particular

student model, or one particular state among the universe of possible states the supermodel

can accommodate. These parameters can be qualitative or quantitative, and qualitative

parameters can be unordered, partially ordered, or completely ordered. A supermodel can

contain any mixture of these types. Their nature is derived from the structure and the

psychology of the learning area, the idea being to capture the essential distinctions among

students.

Any application faces a modeling problem, an item construction problem, and an

inference problem.

The modeling problem is delineating the states or levels of understanding in a

learning domain. In meaningful applications this might address several distinct strands of

learning, as understanding develops in a number of key concepts, and it might address the

connectivity among those concepts.1 Symbolically, this substep defmes the structure of

p(xlii), where x represents observations. Obviously any model will be a gross

simplification of the reality of cognition. A first consideration in what to include in the

supermodel is the substance and the psychology of the domain: Just what are the key

I A particularly interesting special case occurs when the universe of student modelscan be expressed a

performance models (Clancey, 1986). A performance model consists a knowledge base and manipulation

rules that can be run on problems in a domain of interest. A particular model can contain both knowledge

and production rules that are incorrect or incomplete; the solutions it produces will be correct or incorrect in

identifiable ways. Here the parameter 1 specifies features of performance models.
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concepts? What are important ways of understanding and misunderstanding them? What

are typical paths to competence? A second consideration is the so-calledgrain-size

problem, or the level of detail at which student-models should differ. A major factor in

answering this question is the decision-making framework under which the modeling will

take place. As Greeno (1976) points out, "It may not be critical to distinguish between

models differing in processing details if the details lack important implications for quality of

student performance in instructional situations, or the ability of students to progress to

further stages of knowledge and understanding."

The item construction problem is devising situations for which students who differ

in the parameter space are likely to behave in observably different ways. The conditional

probabilities of behavior of different types given the unobservable state of the student are

the values of p(xlri), which may in turn be modeled in terms of another set of parameters,

say j3. The p(x1n) values provide the basis for inferring back about the student state. An

element in x could contain a right or wrong answer to a multiple-choice test item, but it

could instead be the problem-solving approach regardless of whether the answer is right or

wrong, the quickness of a responding, a characteristic of a think-aloud protocol, or an

expert's evaluation of a particular aspect of the performance. The effectiveness of an item

is reflected in differences in conditional probabilities associated with different parameter

configurations, so an item may be very useful in distinguishing among some aspects of

potential student models but useless for distinguishing among others. Tatsuoka (1989)

demonstrates the relationship between item construction and inference about students'

strategies for subtracting mixed numbers.

The inference problem is reasoning from observations to student models. The

model-building and item construction steps provide n and p(x111). Let p(n) represent

expectations about ri in a population of interestpossibly non-informative, possibly based

on expert opinion or previous analyses. Bayes theorem can be employed to draw

inferences about n given x via p(Tilx) p(xli) p(Ti). Thus p(rilx) characterizes belief

about a particular student's model after having observed a sample of the student's behavior.

Practical problems include characterizing what is known about 13 so as to determine p(xlri),

carrying out the computations involved in determining p(rilx), and, in some applications,

developing strategies for efficient sequential gathering of observations. As we have noted,

analogous problems have been studied in standard test theory, and the solutions there,

because they are applications of general principles of statistical inference, generalize to
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models built around alternative psychological models. The models are more realistic and

more ambitious, but the formalism is identical.2

Previous Research

Research relevant to this approach has been carried out in a wide variety of fields,

including cognitive psychology, the psychology of mathematics and science education,

artificial intelligence (AI) work on student modeling, test theory, and statistical inference.

Cognitive scientists have suggested general structures such as "frames" or "schemas" that

can serve as a basis for modeling understanding (e.g., Minsky, 1975; Rumelhart, 1980),

and have begun to devise tasks that probe their features (e.g., Marshall, 1989, in press).

Researchers interested in the psychology of learning in subject areas such as proportional

reasoning have focused on identifying key concepts, studying how they are typically

acquired (e.g., in mechanics, Clement, 1982; in ratio and proportional reasoning, Karplus,

Pulos, & Stage, 1983), and constructing observational settings that allow one to infer

students' understanding (e.g., van den Heuvel, 1990; McDermott, 1984). We make no

effort here to review these lheratures, but point out that our work can succeed only by

building upon their foundations. Our potential contribution would be to the structures and

mechanics of model-building and inference. The following sections briefly mention some

important work along these lines from test theory and statistics.

Modeling Student Behavior

The standard models of educational measurement are concerned solely with

examinees' tendencies to answer items correctlythat is, their overall proficiency.

Recently, however, models that focus on patterns other than overall proficiency have begun

to appear the test theory literature. Some examples that are relevant to educational

applications are listed below.

2 Advocates of student modeling emphasize the qualitative aspects of student models. Our approach is

compatible with this view, as it is possible to build universes of qualitative models, indexed by parameters

that distinguish their features. Our knowledge about a. particular student's model is imperfect, however. It

can be expressed in terms of probabilities expressing the plausibility of various models, given what has

been observed. Probabilities are quantitative, and admit to a calculus of manipulation. We might thus

employ a quantitative model for our (imperfect) knowledge about qualitative student models.

5



1. Mislevy arid Verhelst's (1990) mixture models for item responses when different

exarninees follow different solution strategies or use alternative mental models. When a

single IRT model cannot capture key distinctions among examinees, it may suffice to posit

qualitatively distinct classes of examinees and use IRT models to summarize distinctions

among examinees within these classes.

2. Wilson's (1989b) Saltus model for characterizing stages of conceptual development.

This model parameterizes the differential patterns of strength and weakness expected as

learners progress through successive conceptualizations of a domain.

3. Falinagne's (1989) and Haertel's (1984) latent class models for Binary Skills.

These models are intended for domains in which competence can be described by the

presence or absence of several (possibly complex) elements of skill or knowledge, and

observational situations can be devised that demand various combinations of these skills.

Also see Paulson (1986) for an alternative use of latent class modelling in cognitive

assessment.

4. Embretson's (1985) multicomponent models for integrating item construction and

inference within a unified cognitive model. The conditional probabilities of solution steps

given a multifaceted student model are given by IRT-like statistical structures.

5. Tatsuoka's (1989) Rule space analysis. Tatsuoka uses a generalization of IRT

methodology to define a metric for classifying examinees based on likely patterns of item

response given patterns of knowledge and strategies.

6. Yamamoto's (1987) Hybrid model for dichotomous responses. The Hybrid model

characterizes an examinee as either belonging to one of a number of classes associated with

states of understanding, or in a catch-all IRT class. This approach might be useful when

certain response patterns signal states of understanding for which particular educational

experiences are known to be effective. Listructional decisions are triggered by these

patterns if they are detected, but by overall proficiency when no more targeted action can be

provided.

7. Masters and Mislevy's (in press) and Wilson's (1989a) use of the Partial Credit

rating scale model to characterize levels of understanding, as evidenced by the nature or

approach of a performance rather than its correctness. These applications incorporate into a

I 2
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probabilistic framework the cognitive perspective underlying Biggs and Collis's (1982)

SOLO taxonomy for describing salient qualities of performances.

These are the rudiments of models upon which concept-referenced achievement

measures can be based. Applications to date have been fairly limited, and most have

addressed one-to-many relationships between an underlying knowledge state and

observable behavior. That is, a single (possibly unordered or multifaceted) variable has

been used to characterize examinees, and performance on all items is modeled in terms of

this variable. What is lacking from the point of view of the educator is the fact that

meaningful real world tasks are rarely segregated into these neat little sets. Rather, they

often involve multiple concepts, connections among larger concepts, and transformations

among alternative representations of a domain. While the simple tasks that characterize

one-to-many domains are essential at early stages of learning, more complex tasks that

involve multiple concepts in many-to-many relationships are needed to promote the

integration among concepts that form the core of what is often called "higher-level

learning."

Inference Networks

Recent developments in the context of probability-based inference networks

(Lauritzen & Spiegelhalter, 1988; Pearl, 1988) offer a capability for integrating conceptual

models of the type described above. These probability-based structures are attractive for

educational measurement because they permit a coherent extension of the modeling

approach and inferential logic of the new cognitive-assessment models mentioned above.

To show how the approach might be applied in the educational setting, we first discuss an

application in the setting of medical diagnosis.

MUNIN is an inference network that organizes knowledge in the domain of

electromyographythe relationships among nerves and muscles. Its function is to

diagnose nerve/muscle disease states. The interested reader is referred to Andreassen,

Woldbye, Falck, and Andersen (1987) for a fuller description. The prototype discussed in

that presentation and used for our illustration concerns a single arm muscle, with concepts

t_O
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represented by twenty-five nodes and their interactions represented by causal links.3 A

graphic representation of the network appears in Figure 1.

[Figure 1 about here]

The rightmost column of nodes in Figure 1 concerns outcomes of potentially

observable variables, such as symptoms or test results. These outcomes are the x vector in

our earlier notation. The middle layers are "pathophysiological states," or syndromes.

These drive the probabilities of observations. The leftmost layer is the underlying disease

state, including three possible diseases in various stages, no disease, or "Other"a

condition not built into in the system. These states drive the probabilities of syndromes. It

is assumed that a patient's true state can be adequately characterized by values of these

disease and syndrome statesour n parameter. Paths indicate conditional probability

relationships, which are to be determined either logically, subjectively, purely empirically,

or through model-based statistical estimation. In particular, the paths ending at observables

represent p(x1n). Note that the probabilities of observables depend on some syndromes,

but not others. The lack of a path signifies conditional independence. Note also that a

given test result can be caused by different disease combinations.

As a patient enters the clinic, the diagnostician's state of knowledge about him is

expressed by population base rates, or p(i). This is depicted in Figure 1 by bars that

represent the base probabilities of disease and syndrome states. Base rates of observable

test results are similarly shown. Tests are carried out, one at a time or in clusters, and with

each result the probabilities of disease states are updated. The expectations of tests not yet

given are calculated, and it can be determined which test will be most informative in

identifying the disease state. Knowledge is thus accumulated in stages, from p(T) to

p(11x1) after observing the first subset of tests, to p(rilxl,x2) after the second, and so on,

with each successive test selected optimally in light of knowledge at that point in time.

Figure 2 illustrates the state of knowledge after a number of electromyographic test results

have been observed. Observable nodes with results now known are depicted with shaded

bars representing observed values For them, knowledge is perfect. The implications of

these results have been propagated leftward to syndromes and disease states, as shown by

3 The ESPRIT team has generalized the application to address clusters of interrelated muscles in a network

containing over a thousand nodes.
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distributions that differ from the base rates in Figure 1. These values guide the decision to

test further or initiate a treatment. Finally, updated beliefs about disease states have been

propagated back toward the right to update expectations about the likely outcomes of test

not yet administered. These expectations, and the potential they hold for further updating

knowledge about the disease states, guide the selection of further tests.

[Figure 2 about here]

Inference Networks in the Educational Setting

To see how the ideas underlying MUNIN apply to the educational setting, consider

the following analogy:

Medical Application

Observable symptoms, medical tests

Disease states, syndromes

Architecture of interconnections based

on medical theory

Conditional probabilities given by

physiological models, empirical data,

expert opinion

Educational Application

Test items, verbal protocols, teachers'

ratings of levels of understanding,

solution traces

States or levels of understanding of

key concepts, available strategies

Architecture of interconnections based

on cognitive and educational theory

Conditional probabilities given by

psychological models, empirical data,

expert opinion

The definitions of key concepts will be guided by theorized and observed stages of

learning in the area, and the connections with observables will be expressed through

measurement models such as those discussed above. The initialization of the probabilities

in the network will be accomplished by one or more methods: clinical analysis, with skilled

interviewers assessing in detail the nature of students' understandings and related these

understandings to task performances; statistical analysis of data concerning selected models
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for portions of the larger network (Mislevy & Verhelst, 1990); or theoretical analysis, in

which logic or theory provides expectations for outcomes under hypothesized cognitive

states. After the initialization phase, connections can be updated periodically with the larger

amounts of less precise data that will be accumulated as students provide information about

the adequacy of the relationships embodied in the network and the accuracy of the baseline

and conditional probabilities.

A Numerical Example

Siegler's balance beam tasks

Kuhn (1970) emphasizes the central role that exemplars, or small, archetypical

examples, play in science. Textbook examples are the vehicle through which students are

acculturated to the concepts and relationships of a particular way of viewing a class of

phenomena--a paradigm, in Kuhn's words. They function almost like parables or

morality tales. New paradigms are introduced with new exemplars, that introduce new

concepts, highlight differences between the new paradigm and the old, and demonstrate

how the new way of thinldng solves problems the old way could not. Modeling the states

of the electron in the hydrogen atom possesses this status in quantum mechanics.

Explaining children's understanding of balance beam problems, an exemplar from

developmental psychology originated by Piaget, is approaching the same status in test

theory (e.g., Kempf, 1983, Mislevy, in press-b, and Wilson, 1989b). Robert Siegler's

balance beam tasks yield data that are, on the surface, indistinguishable from standard test

data, but there are two key distinctions:

1. What is important about examinees is not their overall probability of answering

items correctly, but their (unobservable) state of understanding of the domain.

2. Children at less sophisticated levels of understanding initially get certain problems

right for the wrong reasons. These items are more likely to be answered wrong at

intermediate stages, as understanding deepens! They are bad items by the standards

of classical test theory and IRT, because probabilities of correct response do not

increase monotonically with increasing total test score. From the perspective of the

developmental theory, however, not only is this reversal expected, but it plays an

important role in distinguishing among children with different ways of thinking

about the problems.



Attempting to study childmn's reasoning in a manner less subjective than Piaget's

unstructured interviews, Siegler (1981) devised a series of balance beam tasks like the one

illustrated in Figure 3. Varying numbers of weights are placed at varying locations on a

balance beam. The child predicts whether the beam will tip to left, to the right, or remain in

balance. Piaget's analysis of children's behavior on balancing tasks (Inhelder & Piaget,

1958), posits that a child will respond in accordance with his or her stage of understanding.

The usual stages through which children progress can be described in terms of successive

acquisition of the rules listed below.

[Figure 3 about here]

Rule j: If the weights on both sides are equal, it will balance. If they are not equal, the

side with the heavier weight will go down. (Weight is the "dominant dimension,"

because children are generally aware that weight is important in the problem earlier

than they realize that distance from the fulcrum, the "subordinate dimension," also

matters.)

Rule II: If the weights and distances on both sides are equal, then the beam will balance.

If the weights are equal but the distances are not, the side with the longer distance

will go down. Otherwise, the side with the heavier weight will go down. (A child
using this rule uses the subordinate dimension only when information from the

dominant dimension is equivocal.)

Rule LW Same as Rule II, except that if the values of both weight and lengthare unequal

on both sides, the child will "muddle through" (Siegler, 1981, p.6). (A child using

this rule now knows that both dimensions matter, but doesn't know just how they

combine. Responses will be based on a strategy such as guessing.)

Rule IV: Combine weights and lengths correctly (i.e., compare torques, or products of
weights and distances).

It was thus hypothesized that each child could be classified into one of five stages
the four characterized by the rules, or an earlier "preoperational" stage in which neither

weight nor length are thought to bear any systematic relationship to the action of the beam.

Siegler developed six types of problems listed below to distinguish among children

at different stages of reasoning. (See Figure 4 for an example of each.)
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Equalproblems (E), with matching weights and lengths on both sides.

Dominant problems (D), with unequal weights but equal lengths.

Subordinate problems (S), with unequal lengths but equal weights.

Conflict-dominant problems (CD), in which one side has greater weight, the other has

greater length, and the side with the heavier weight will go down.

Conflict-subordinate problems (CS), in which one side has greater weight, the other has

greater length, and the side with the greater length will go down.

Conflict-equal problems (CE), in which one side has greater Weight, the other has greater

length, and the beam will balance.

[Figure 4 about here]

Table 1 shows the probabilities of correct response that would be expected from

groups of children in different stages, if their responses were in complete accordance the

hypothesized rules. Scanning across the rows reveals how the probability of a correct

response to a given type of item does not always increase as level of understanding

increases. For example, Stage II children tend to answer CD items right for the wrong

reason, while Stage III children, now aware of a conflict, flounder.

[Table 1 about here]

A latent class model for balance beam tasks

If the theory were perfect, the columns in Table 1 would give probabilities of

correct response to the various types of items from children at different stages of

understanding. Observing a correct response to an S item, for example, would eliminate

the possibility that the child was in Stage I. But because the model is not perfect4, and

because children make slips and lucky guesses, any response could be observed from a

child in any stage. A latent class model (Lazarsfeld, 1950) can be used to express the

4 This model assumes that the five states are exhaustive and mutually exclusive. Alternative models, such

as those of Tatsuoka and Yamamoto mentioncd earlier, could be used to relax these restrictions.
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structure posited in Table 1 while allowing.for some "noise" in real data (see Appendix for

details). Instead of expecting incorrect responses with probability one to S items from

Stage I children, we might posits some small fraction of correct answersp(S correct]

Stage=I). Similar probabilities of "false positives" can be estimated for other cells in Table

1 containing O's. In the same spirit, probabilities less than one, due to "false negatives,"

can be estimated for the cells with 1 's. Note that inferences cannot be as strong when these

uncertainties are present; a correct response to an S item still suggests that a child is

probably not in Stage I, but no longer is it proof positive.

Expressing this model in the notation introduced above, Ti represents stage

membership, x represents item responses, and p(xIT) are conditional probabilities of

correct responses to items of the various types from children in different stagesa noisy

version of Table 1. The proportions of children in a population of interest at the different

stages are p(r1), and the probabilities that convey our knowledge about a child's stage after

we have observed his responses are p(nlx).

Siegler created a 24-task test comprised of four tasks of each type. He collected

data from 60 children, from age 3 up through college age, at two points in time, for a total

of 120 response vectors. We fit a latent class model to these data using the HYBRIL

computer program (Yamamoto, 1987), obtaining the conditional probabilitiesp(xIV----

shown in Table 2, and the following vector summarizing the (estimated) population

distribution of stage membership:

p(n) = (Prob(Stage=0), Prob(Stage=I), Prob(Stage=IV))

= (.257,.227,.163,.275,.078) .

[Table 2 about here]

Note that different types of items are differentially useful to distinguish among

children at different levels. E items, for example, are best for distinguishing Stage 0

children from everyone else. CD items, which would be dropped from standard tests

because their probabilities of correct response do not have a strictly increasing relationship

with total scores, help differentiate among children at Stages II, III, and IV.

Figure 5 depicts the state of knowledge about a child before observing any

responses using the conventions of the MUNIN figures. Just one item of each type is

shown rather than all four for simplicity. The corresponding status of an observable node

I 0
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(i.e., an item type) is the expectation of a correct response from a child selected at random

from the population. The path from the stage-membership node to a particular observable

node represents a row of Table 2.

[Figure 5 about here]

Adaptive testing

Figure 5 represents the state of our knowledge about a child's reasoning stage and

expected responses before any actual responses are observed. How does knowledge

change when a response is observed? One of the children in the sample, Douglas, gave an

incorrect response to his first S item. This could happen regardless of Douglas' true stage;

the probabilities are obtained by subtracting the entries in the S row of Table 2 from 1.000,

yielding, for Stages 0 through IV, .667, .973, .116, .019, and .057 respectively. This is
the likelihood function for i induced by the observation of the response. The bulk of the

evidence is for Stages 0 and I. Combining these values with the initial stage probabilities

p(n) via Bayes theorem yields updated stage probabilities, p(rilincorrect response to an S

item): for Stages 0 through IV respectively, .41, .52, .04, .01, and .01. Expectations for

items not yet admhustered also change. They are averages of the probabilities of correct

response expected from the various stages, now weighted by the new stage membership

probabilities. The state of knowledge after observing Douglas' first response is depicted in

Figure 6 (see Appendix for details; also see Macready & Dayton, 1989.)

[Figure 6 about here]

In a simulation of adaptive testing, we updated our knowledge about Douglas one

response at a time, at each step looking at his actual response to an item expected to most

substantially reduce our uncertainty about his stage membership. Figure 7 charts

probabilities of stage membership for Douglas after each of the first ten items, showing that

we quickly converge to Stage 0.

[Figure 7 about here]

Extending the paradigm

The balance beam exemplar illustrates the challenge of inferring states of

understanding, but it addresses development of only a single key concept. A major thrust

of our proposal is to characterize interconnections among distinct lines of development.
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This section takes a small step in this direction by discussing a hypothetical extension to the

exemplar, namely, the ability to carry out the arithmetic operations needed to calculate

torques. For illustrative purposes, we simply posit a skill to carry these calculations out

reliably, either possessed by a child or not. Obviously states of understanding could be

developed in greater detail here.

Calculating and comparing torques to solve the "conflict" problems characterizes

Stage IV. But if a child at Stage IV cannot carry out the calculations reliably, his pattern of

correct and incorrect responses would be hard to distinguish from that of a child in Stage

M. Although the two children might answer about the same number of items correctly, the

instruction appropriate for them would differdramatically. And children at any stage of

understanding of the balance beam might be able to carry out the computational operations

in isolation. The goal of the extended system is to infer both balance-beam understanding

and computational skill. To make the distinctions among states of understanding in this

extended domain, we introduce two new types of observations:

1. Items isolating computation, such as "Which is greater, 3 x4 or 5x27"

2. Probes for introspection about solutions to conflict items: "How did you get your

answer?"

Figure 8 offers one possible structure for this network. Others could be entertained,

and in practice one would compare the degree to which they accord with observed data. To

keep the diagram simple, only one balance-beam task each for an S and a CS task are

illustrated. E and D items would have the same paths as the S task, and CD and CE tasks

would have the same paths as the CS tasks. Also, the paths from Stage 0, I, and II

indicators to balance beam tasks are not drawn in. The structure of paths, but not

necessarily the values, would be the same as those connecting the Stage HI indicator to

those tasks.

[Figure 8 about here]

There are three kinds of unobservable variables in the system. The first group

expresses level of understanding in the balance beam domain. It proves convenient to

express stage membership in terms of dichotomous indicator variables for each stage,

because of the special relationship of Stage IV to computational skill. Second is the ability

to carry out the calculations involved in computing torques. The third concerns the

integration of balance-beam understanding and calculating proficiency. Specifically, we
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posit an indicator for whether a child both is in Stage IV and possesses the requisite

computational skills. Other features of the network worth mentioning are as follows.

1 . The probabilities of the pure computation items depend on the unobservable

computation variable only; they are conditionally independent of level of balance

beam understanding.

2. The correctness aspect of an answer has only two possibilities, right or wrong, but
an explanation can fall into five categories corresponding to levels of

understanding. A Stage Ill child might give an explanation consistent with Stages

0, I, II, or III, but would not give a Stage IV explanation. Theory thus posits that
the conditional probability of a Stage K response from a Stage J child is zero if
K>J. Conditional probabilities for K.SJ might be estimated from data or based on

experts' experience. It may turn out, for example, that the most likely explanation
for an E task from people at Stage IV would probably be a Stage II explanation: "It

balances because both the weights and distances are equal."

3. For children in Stages 0 through III, both the right/wrong answers and the "How"
answers to balance beam tasks depend only on level of understanding. Because

they do not realize the connection between the problems and the torque calculations,
their responses to the balance beam tasks are conditionally independent of their

computational skill, even on items for which that skill is an integral component of
an expert solution.

4. For children in Stage IV, right/wrong answers to conflict items depend on the

understanding/computation integration variable, but "How" answers depend only
on understanding. A child in Stage IV with low computational skill can thus be
differentiated from a child in Stage HI by his higher probabilities of giving Stage IV
explanations and incorrect answers to pure computation problems.

Discussion

This conceptual framework described above holds the promise of extending and
clarifying standard educational measurement practices in several ways:

Connections with instruction can be forged more easily than with standard tests,
because the focus is no longer on how many questions a student can answer, but how they

answer them. In medical diagnosis, different diseases gave rise to similar results in certain

22
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tests; in education, so too can different approaches lead to similar test scores for students.

But accounting for the patterns of performance, especially if probing adaptively, can

pinpoint the areas which need attention to best improve performance.

Student reports can be provided at varying levels and highlighting different features

of a student's status. Of particularimportance to the student and the teacher are reports in

terms of levels or stages of understanding of key concepts, since this is the level at which

instruction is aimed. For the quality control purposes of administrators, however, one

could predict a student's performance on a standard set of tasks in the domainsay, a

"market basket" of tasks that, ideally, every student should eventually be able to handle.

Use of different strategies or mental models can be accommodated in an inference

network. This can take the form of either a single strategy/mental model choice for all tasks

in a class, as studied by Mislevy and Verhelst (1990), or strategy/model switching from

one task to another (as in Snow & Lohman, 1984). The nature and the strength of

inferences one can draw will depend on the potential observational settings. With rich

information, such as verbal protocols or partial solutions, it may be possible to characterize

the range of solution methods the student hasavailable and the conditions under which he

employs them.

Testing "higher-order thinking" can be accomplished by including unobservable

nodes for connecfions among more basic facts or concepts, and observable nodes that

correspond to tasks for which the relationships of interest are critical. Because such tasks

might well be open-ended and approachable in a variety of ways, the possibility of

alternative solution strategies would need to be built into the network.

Adaptive testing can be carried out among concepts, not just for a single concept.

IRT applications of adaptive testing are based on the one-to-many relationships that are

appropriate for determining overall levels ofproficiency, but inadequate for understanding

connections among concepts. The inference network facilitates stepping variously

throughout a domain, gathering information aboutcritical domains by presenting tasks that

call for varying combinations of key skills.

Handling atypical knowledge configurations or observational patterns can be

accomplished by incorporating nodes analogous to the "Other" disease state in MUNIN r

the catch-all IRT class in Yamamoto's (1987) Hybrid model. An "Other" state of

understanding is a mechanism for capturing observational patterns that do not accord with
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those specifically built into the network. A situation-sensitive student report might be
generated in an instructional system when such a node becomes prominent, signalling that
more intelligence than is embodied in the system is needed to figure out what this student is
doing, and decide what to do about it.

Conclusion

Learning can be enhanced by a unified conceptual framework for instruction,
testing, and reporting, because only in such a framework can coherent feedback loops be
constructed. This presentation has focused on the educational measurement aspect of a
system built on this premise. The recent introduction ofmeasurement models built around
states of understanding, and of inferential techniques to connect such pieces into networks
that describe domains of school learning, provide a foundation for improved educational
practice in this manner.
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Appendix

Equations for the Latent Class Model

The Model

Let ri = (110,...14) denote the stage ofunderstanding of a child, with rik=1 if he or

she is in Stage k and 0 if not. Let lt = (no,...,7t4) denote the population proportions of

children in these classes; that is, Itk p(Tbc=1). Let xj represent a response to Task j, 1 if

correct and 0 if not; j runs from 1 to 24. The conditional probabilities of correct response

are Prob(xj=1111k=1), or Pjk Tor short. P &notes the matrix ((pli)). A vector of item

responses, x = (xl,...,x24) is assumed to have the following probability conditional on

Stage membership:

p(xhlk=1) = pjkxj (l_pjol-xj

(1)

Similar expressions are assumed to hold for subsets of responses as well, regardless of the

order in which they are observed.

The marginal probability of a response vector is an average of terms like (1),

weighted by the population probabilities of stage membership:

4

POO =I p(xliik=1)
k4 (2)

Let X denote the matrix of response vectors of a sample of N respondents. For a generic

pattern 71,1 , let II/ be the number of respondents producing this pattern. The probability of

X as a function of P and IC has the form

P(X1Par) = C fl p(x,t)"/ ,
(3)

where C does not depend on P or It. Once X has been observed, (3) can be interpreted as

a likelihood function, and maxima may be found with respect to P and TC.

Because N is only 120 in the balance beam example, a number of constraints were

introduced so that stable estimates would be obtained. Many could be relaxed or removed
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with larger samples. The results reported in Table 2 represent the best-fitting result among

several models with similar numbers of constraints. The Pjks that appear as .333 in Table

1 were fixed at that value. All four items of a given type were constrained to have the same

Pfics. For a given column, all Pjks in cells that correspond to l's in Table 1 were

constrained to be equal to a single estimated value. Any cells in that column that

correspond to O's were constrained to its comp: ment.

Adaptive Testing

The maximum likelihoOd esfimates of P and 7C were treated as known true

parameter values during simulated adaptive testing. The uncertainty in these values could

be taken into account, but we have avoided the complication for this demonstration.

Before observing any responses from a given child, the expected value of his 1 is

the population value rc. The expected value of a response to a particular item j is obtained

analogously to (2), simplified to a single, as yet unobserved, response:

P(Xj=l) = P(xj=1111k=l) P(rlk=1)

= Pik p(rik=1) .
(4)

Suppose that Item g is administered to a particular examinee, and the value of xg,

either 0 or 1, becomes known. How is this information propagated through the network?

First, using Bayes theorem, we update probabilities for his For k=0,...,4,

p(iik=l1x0 -
P(Xghlk=l) oik=i)

/ 00111=0 P(1h=1)
(5)

This gives new probabilities that the examinee is in each of the possible stages. These are

in turn reflected in new expectations for items not yet administered by replacing p(lk=1) in

(4) with p(Tlk=1Ixg) to obtain

P(xj=lb(g) = p(xj=1111k=1)1)(11k=llxg) .
(6)

This process can be repeated with additional items presented one at a time. Let xs

represent a partial response sequence; Item s+1 is next administered to form xs.4.I. Then
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P(11k=i Ixs+t) p(xs1=liTik=1)p(rlk=lIxs)

E p(x..1=1Inh.1)p(rlh=1Ixs)

and, for items not yet presented,

(7)

= I P(xj=1Ink=l) P(11k=11xs+1) .

(8)

Selecting which item to present next and deciding when to stop depends on

probabilities for i. In this paper we have addressed only the case in which no decision-.

making cost structure is available, and we address only the goal of minimizing uncertainty

about r. This can be accomplished by minimum entropy adaptive testing. Entropy is a

measure of randomness. For the five-class balance beam problem, the maximal value of

entropy occurs when probabilities of all five classes are equal, and the minimal value

occurs when the probability of one particular stage is one. The general formula for entropy

after having observed xs is

E(xs) = poik=lixolog[polk=lixo] .

(9)

After having observed xs, one can evaluate the expected entropy associated with the

administration of any remaining item j as

E[xsn(xj=0)] p(xj=0Ixs) + E[xsn(xj=1)] P(xj=1Ixs)

The item that minimizes (10) is presented next.

(10)

It bears repeating that these formulae assume both that the model is correct and the

conditional probabilities are known with certainty. Violations of these assumptions

generally degrade knowledge about an examinee's state, making (5) and (8) in particular

overly optimistic. Work remains to be done, in studying the robustness of the approach to

violations of the assumptions, learning how to minimize violations in practice, and

modifying the model or the conditional probabilities to mitigate inferential errors in the

presence of violations.
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TABLE 1

Theoretical Conditional Probabilities-

Expected Proportions of correct Response

Problem type Stage 0 Stage I Stage II Stage III Stage IV

E .333 1.000 1.000 1.000 1.000

D .333 1.000 1.000 1.000 1.000

S .333 .000 1.000 1.000 1.000

CD .333 1.000 1.000 .333 1.000

CS .333 .000 .000 .333 1.000

CE .333 .000 .000 .333 1.000

TABLE 2

Estimated Conditional Probabilities-

Expected Proportions of correct Response

Problem type Stage 0 Stage I Stage 11 Stage III Stage IV

E .333* .973 .883 .981 .943

D .333* .973 .883 .981 .943

S .333* .026 .883 .981 .943

CD .333* .973 .883 .333* .943

CS .333* .026 .116 .333* .943

CE .333* .026 .116 333* .943

* denotes fixed value
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The MUNIN Network: Initial Status

(From Andreassen et al., 1987)
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When the blocks are removed, will the

beam tip left, tip right, or stay flat?

Figure 3

A Sample Balance-Beam Task



Item Type Sample Item Description

Equal problems (E), with
matching weights and lengths on
both sides.

Dominant problems (D), with
unequal weights but equal
lengths.

Subordinate problems (S), with
unequal lengths but equal
weights.

Conflict-dominant problems (CD),
in which one side has greater weight,
the other has greater length, and the
side with the heavier weight will go
down.

Conflict-subordinate problems
(CS), in which one side has greater
weight, the other has greater length,
and the side with the greater length
will go down.

Conflict-equal problems (CE), in
which one side has greater weight,
the other has greater length, and the
beam will balance.

Figure 4

Sample Balance Beam Items



Cognitive Level

Figure 5

Initial State in an Inference Network

for the Balance Beam Example
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Figure 6

State of Knowledge about Cognitive Level

after an Incorrect Response to an S Item
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Conjunction of
Cognitive Level and
Computation Skill

Computation
Skill

Problem
Type

S-item--
Correctness

CS-item--
Explanation

CS-item--
Correctness

Computation

oi
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Figure 8

Representation of an Extended Balance-Beam Network
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